Wednesday, February 23, 2011

Build an Indoor FM Antenna With These Plans


The easiest way to improve your FM reception is to build an indoor FM antenna, instead of using your FM stereo’s internal FM antenna. This indoor FM antenna is easy to build, and cheap. It works every bit as good as other FM antennas that you can buy for as much as $100.

In order to build this indoor FM antenna, all you need is two 3/8” dowel rods 48” long, 10 ft. of 20 ga. wire, and some 75 ohm RG-59 or RG-6 coax (for TV’s). All of this can be picked up at your local hardware store. However sometimes hardware stores don’t have dowel rods 48”. If you can’t find any that long, you can always take two 36” dowel rods and tie them together with cable ties to the correct length.

This FM antenna is what is called a Full Wave Loop antenna. The diagram below shows the design of this indoor FM antenna:


The red is the wire, which is to be 30” on each side. The brown represents the 3/8 inch dowel rods. Also notice that the coax is fed from the side. This is not necessary, as typically full wave loops are fed from the bottom. I was interested in receiving one particular station that transmits a vertically polarized signal. Almost all FM stations transmit circularly polarized, which is both vertical, and horizontal polarization. Also feeding the Fm antenna from the side seemed to be a stronger, more reliable means of connecting the coax to the FM antenna.As far as construction of the FM antenna, the first thing to do is cut 4 inches off each dowel rod. This will then make each dowel rod 44 inches long. Next cut a slit aprox. ½ inch on each end of the dowel rods. These slits will be how you mount the wire to the dowel rods of your FM antenna.

Here is a photo of what I am talking about:


This not only shows the slot cut in the dowel rod, but also the wire, as well as the use of a cable tie to secure the wire to the end.

On the last end, where we will attach the coax to the FM antenna, put both ends of the wire into the slot leaving about an inch extending past. Next strip off the insulation and attach one end of the loop to the center conductor of the coax, and the other end of the loop to the shield of the coax.

Here is a photo of the coax being attached to the FM antenna.

build indoor fm antenna plans

Next, secure the coax to the dowel rods with it coming off the bottom dowel rod. Lastly, take a couple of cable ties and put one on the top of the vertical dowel rod to create a loop to attach a string to hang the FM antenna.

The photo below shows the completed FM antenna:

build indoor fm antenna plans

2 Meter Turnstile Antenna For Amateur Satellite Communication


Here are construction plans of a Turnstile antenna that I use for space communication on the 2 meter amateur radio band. Specifically for 145.80 mHz.

A Turnstile antenna with a reflector underneath it makes a good antenna for space communications because it produces a circularly polarized signal pattern and also has a broad, high angle pattern. Due to these characteristics, there is no need to rotate the antenna.

My design goals were that it had to be cheap (of course!) and made from easily available materials. In looking at other turnstile antenna designs, one thing that has always bothered me is that they use coax (un-balanced feedline) and directly feed the antenna (balanced load). According to the antenna books, this situation tends to cause the coax to radiate, and upset the overall radiation pattern of the antenna.

The Antenna
What I decided to do is to use "folded dipoles" instead of traditional ones. Then feed the turnstile antenna with a 1/2 wavelength 4:1 coaxial balun. This type of balun also takes care of the "balance-to-unbalance" problem usually encountered as well.
The drawing below shows how to make a turnstile antenna. Please note, this is not to scale.

2 Meter Turnstile Antenna

Construction of a turnstile reflector antenna consists of two 1/2 wavelength horizontal dipoles that are oriented 90 degrees from each other (like a big X). Then feed one dipole 90 degrees out of phase of the second one. One problem with Turnstile Reflector antennas is that the structure to hold up the relector part can be cumbersome. Fortunately (some might disagree) I decided to build my turnstile antenna in my attic. This solves another problem in that I also don't have to concern myself with is weatherizing the antenna.
For the folded dipoles I used 300 ohm TV twinlead. What I had on hand was low loss "foam" type. This particular twinlead has a velocity factor of 0.78. You will also notice in the above drawing that the lengths ot the dipole aren't what you would expect for 2 meters. This is the length I ended up when I was finished adjusting for minimum SWR. Apparently the velocity factor of the twinlead figures into the resonance of the folded dipole. As they say, "Your mileage may vary" on this length. I would also like to point out that in the drawing above the feedpoint of the folded dipoles is actually in the center of the folded dipole. I made the drawing this way for clairity.

The Reflector
In order to get the radiation pattern in the upward direction for space communications the turnstile antenna needs a reflector underneath it. For a broad pattern the antenna books recommend 3/8 wavelength (30 inches) between the reflector and the turnstile. The material I chose for the reflector is ordinary window screen you can pick up at a hardware store. Make sure it is metal screen as there is a non-metal type of window screen they sell as well. I purchased enough to lay out an 8 foot square on the rafters of my attic. The hardware store couldn't give me one big piece for all of this, so I overlapped pieces of screen by about a foot on the seam. From the center of the reflector, I measured up 30 inches (3/8 wavelength). This is where the center, or the crossing point of the folded dipoles are located.